FEATURES

- $128 \mathrm{~K} \times 8$ organization
- Single +5 V power supply
- +12.5V programming voltage
- Fast access time: 45/55/70/90/100/120/150 ns
- Totally static operation
- Completely TTL compatible
- Operating current: 30 mA
- Standby current: 100uA
- Package type:
- 32 pin ceramic DIP, plastic DIP
- 32 pin SOP
- 32 pin PLCC
- 32 pin TSOP

EPROM programmers may be used. The MX27C1000/ 1001 supports an intelligent fast programming algorithm which can result in programming time of less than thirty seconds.

This EPROM is packaged in industry standard 32 pin dual-in-line packages, 32 lead PLCC , 32 lead SOP , and 32 lead TSOP packages.

CDIP/PDIP/SOP(MX27C1001)

TSOP(MX27C1000)

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27C1000/1001

The MX27C1000/1001 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds/ cm^{2} is required to completely erase a MX27C1000/1001 This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of 2537 Angstroms (\AA) - with intensity of $12,000 \mathrm{uW} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The MX27C1000/ 1001 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27C1000/1001, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than $4000 \AA$ Although erasure times will be much longer than that with UV sources at $2537 \AA$ nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27C1000/1001 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27C1000/1001

When the MX27C1000/1001 is delivered, or it is erased, the chip has all 1M bits in the "ONE" or HIGH state. "ZEROs" are loaded into the MX27C1000 through the procedure of programming.

PIN DESCRIPTION

SYMBOL	PIN NAME
A0~A16	Address Input
Q0~Q7	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
$\overline{\text { PGM }}$	Programmable Enable Input
VPP	Program Supply Voltage
NC	No Internal Connection
VCC	Power Supply Pin $(+5 \mathrm{~V})$
GND	Ground Pin

For programming, the data to be programmed is applied with 8 bits in parallel to the data pins.

Vcc must be applied simultaneously or before Vpp, and removed simultaneously or after Vpp. When programming an MXIC EPROM, a 01.uF capacitor is required across Vpp and ground to suppress spurious voltage transients which may damage the device.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP $=12.75 \mathrm{~V}$ is applied, with $\mathrm{VCC}=6.25 \mathrm{~V}$ and PGM = VIL(or OE = VIH) (Algorithm is shown in Figure 1). The programming is achieved by applying a single TTL low level 100us pulse to the PGM input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at $\mathrm{VCC}=\mathrm{VPP}=5 \mathrm{~V} \pm 10 \%$.

PROGRAM INHIBIT MODE

Programming of multiple MX27C1000/1001s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX27C1000/1001 may be common. A TTL low-level program pulse applied to an MX27C1000/1001 CE input with VPP $=12.5 \pm 0.5 \mathrm{~V}$ and PGM LOW will program that MX27C1000/1001. A highlevel $\overline{\mathrm{CE}}$ input inhibits the other MX27C1000/1001s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ at VIL, PGM at VIH, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the MX27C1000/ 1001.

To activate this mode, the programming equipment must force $12.0 \pm 0.5 \mathrm{~V}$ on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte $0(\mathrm{~A} 0=\mathrm{VIL})$ represents the manufacturer code, and byte $1(\mathrm{~A} 0=\mathrm{VIH})$, the device identifier code. For the MX27C1000/1001, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

READ MODE

The MX27C1000/1001 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable $(\overline{\mathrm{OE}})$ is the output control and should be used to gate
data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tCE). Data is available at the outputs tQE after the falling edge of $\overline{\mathrm{OE}}$, assuming that CE has been LOW and addresses have been stable for at least tACC - tQE.

STANDBY MODE

The MX27C1000/1001 has a CMOS standby mode which reduces the maximum VCC current to 100 uA . It is placed in CMOS standby when $\overline{C E}$ is at VCC $\pm 0.3 \mathrm{~V}$. The MX27C1000/1001 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

1. Low memory power dissipation,
2. Assurance that output bus contention will not occur.

It is recommended that CE be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 uF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between VCC and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 uF bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array. MX27C1000/1001

MODE SELECT TABLE

MODE	PINS						
	$\overline{C E}$	$\overline{\mathrm{OE}}$	$\overline{\text { PGM }}$	A0	A9	VPP	OUTPUTS
Read	VIL	VIL	X	X	X	VCC	DOUT
Output Disable	VIL	VIH	X	X	X	VCC	High Z
Standby (TTL)	VIH	X	X	X	X	VCC	High Z
Standby (CMOS)	$\mathrm{VCC} \pm 0.3 \mathrm{~V}$	X	X	X	X	VCC	High Z
Program	VIL	VIH	VIL	X	X	VPP	DIN
Program Verify	VIL	VIL	VIH	X	X	VPP	DOUT
Program Inhibit	VIH	X	X	X	X	VPP	High Z
Manufacturer Code(3)	VIL	VIL	X	VIL	VH	VCC	C 2 H
Device Code(27C1000)(3)	VIL	VIL	X	VIH	VH	VCC	OEH
Device Code(27C1001)(3)	VIL	VIL	X	VIH	VH	VCC	OFH

NOTES: 1. $\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $\mathrm{X}=$ Either VIH or VIL
3. $\mathrm{A} 1-\mathrm{A} 8=\mathrm{A} 10-\mathrm{A} 16=\mathrm{VIL}($ For auto select $)$
4. See DC Programming Characteristics for VPP voltage during programming.

FIGURE 1. FAST PROGRAMMING FLOW CHART

SWITCHING TEST CIRCUITS

$C L=100 \mathrm{pF}$ including jig capacitance(30 pF for $45 / 44 / 70 \mathrm{~ns}$ parts)

SWITCHING TEST WAVEFORMS

AC TESTING: AC driving levels are $2.4 \mathrm{~V} / 0.4 \mathrm{~V}$ for commercial grade, $3.0 \mathrm{~V} / 0 \mathrm{~V}$ for industrial grade. Input pulse rise and fall times are $\leq 10 \mathrm{~ns}$.

MX27C1000/1001

ABSOLUTE MAXIMUM RATINGS	
RATING	VALUE
Ambient Operating Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to VCC +0.5 V
VCC to Ground Potential	-0.5 V to 7.0 V
A9 \& Vpp	-0.5 V to 13.5 V

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.
NOTICE:
Specifications contained within the following tables are subject to change.

DC/AC Operating Conditions for Read Operation

		MX27C1000/1001						
		-45*	-55	-70	-90	-10	-12	-15
Operating Temperature	Commercial	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$						
	Industrial			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$				
Vcc Power Supply		$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 10 \%$					

*Note:45ns for MX27C1000 only

DC CHARACTERISTICS

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH $=-0.4 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	IOL $=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	VCC +0.5	V	
VIL	Input Low Voltage	-0.2	0.8	V	
ILI	Input Leakage Current	-10	10	uA	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current	-10	10	uA	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	VCC Power-Down Current		100	uA	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$
ICC2	VCC Standby Current		1.5	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$
ICC1	VCC Active Current	30	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$	
IPP	VPP Supply Current Read	10	uA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{VPP}=5.5 \mathrm{~V}$	

CAPACITANCE $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Sampled only)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN $=0 \mathrm{~V}$
COUT	Output Capacitance	8	12	pF	VOUT $=0 \mathrm{~V}$
Vpp	VPP Capacitance	18	25	pF	VPP $=0 \mathrm{~V}$

AC CHARACTERISTICS

SYMBOL	PARAMETER							UNIT	CONDITIONS
		-45		-55		-70			
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		45		55		70	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		45		55		70	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		25		30		35	ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or $\overline{\mathrm{CE}}$ High to Output Float	0	17	0	20	0	20	ns	
tOH	Output Hold from Address, $\overline{\mathrm{CE}}$ or OE which ever occurred first	${ }^{0}$		0		0		ns	

SYMBOL	PARAMETER	$\begin{gathered} 27 C 1000 / 1001 \\ -90 \end{gathered}$		27C1000/1001-10		27C1000/1001-12		27C1000/1001-15		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	max.	MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		90		100		120		150	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		90		100		120		150	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		40		45		50		65	ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or $\overline{\mathrm{CE}}$ High to Output Float	0	25	0	30	0	35	0	50	ns	
tOH	Output Hold from Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ which ever occurred firs	${ }^{0}$		0		0		0		ns	

DC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$\mathrm{IOH}=-0.40 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	uA	$\mathrm{VIN}=0$ to 5.5 V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program \& Verify)		50	mA	
IPP2	VPP Supply Current(Program)	30	mA	$\overline{\mathrm{CE}}=\overline{\mathrm{PGM}=\mathrm{VIL},}$	
					$\overline{\mathrm{OE}=\mathrm{VIH}}$
VCC1	Fast Programming Supply Voltage	6.00	6.50	V	
VPP1	Fast Programming Voltage	12.5	13.0	V	

AC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time	2.0		us	
tOES	$\overline{\text { OE Setup Time }}$	2.0		us	
tDS	Data Setup Time	2.0		us	
tAH	Address Hold Time	0		us	
tDH	Data Hold Time	2.0		us	
tDFP	Output Enable to Output Float Delay	0	130	ns	
tVPS	VPP Setup Time	2.0		us	
tPW	$\overline{\text { PGM Program Pulse Width }}$	95	105	us	
tVCS	VCC Setup Time	2.0		us	
tCES	$\overline{\mathrm{CE}}$ Setup Time	2.0		us	
tOE	Data valid from $\overline{\mathrm{OE}}$		150	ns	

WAVEFORMS

READ CYCLE

FAST PROGRAMMING ALGORITHM WAVEFORMS

ORDE.3ING INFORMATION

CERAMIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(uA)	OPERATING TEMPERATURE	PACKAGE
MX27C1000DC-45	45	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000DC-55	55	30	100	$0^{\circ} \mathrm{C}+070^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1001DC-55	55	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1001DC-70	70	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1001DC-90	90	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1001DC-10	100	30	100	$0^{\circ} \mathrm{C}+070^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1001DC-12	120	30	100	$0^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1001DC-15	150	30	100	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 PIn DIP

PLASTIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	$\begin{aligned} & \hline \text { STANDBY } \\ & \text { CURRENT MAX.(uA) } \end{aligned}$	OPERATING TEMPERATURE	PACKAGE
MX27C1000PC-45	45	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 PIN DIP
MX27C1000MC-45	45	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1000QC-45	45	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin PLCC
MX27C1000TC-45	45	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin TSOP
MX27C1000PC-55	55	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000MC-55	55	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1000QC-55	55	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin PLCC
MX27C1000TC-55	55	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin TSOP
MX27C1001MC-55	55	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1001PC-55	55	30	100	$0^{\circ} \mathrm{C}$ t0 $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000PC-70	70	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000MC-70	70	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1000QC-70	70	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin PLCC
MX27C1000TC-70	70	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin TSOP
MX27C1001MC-70	70	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1001PC-70	70	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000PC-90	90	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000MC-90	90	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1000QC-90	90	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin PLCC
MX27C1000TC-90	90	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin TSOP
MX27C1001MC-90	90	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1001PC-90	90	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000PC-10	100	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000MC-10	100	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1000QC-10	100	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin PLCC
MX27C1000TC-10	100	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin TSOP
MX27C1001MC-10	100	30	100	$0^{\circ} \mathrm{C}$ t0 $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1001PC-10	100	30	100	$0^{\circ} \mathrm{C}$ t0 $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000PC-12	120	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000MC-12	120	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1000QC-12	120	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin PLCC
MX27C1000TC-12	120	30	100	$0^{\circ} \mathrm{C}$ t0 $70^{\circ} \mathrm{C}$	32 Pin TSOP
MX27C1001MC-12	120	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1001PC-12	120	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000PC-15	150	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000MC-15	150	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1000QC-15	150	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin PLCC
MX27C1000TC-15	150	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin TSOP
MX27C1001MC-15	150	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1001PC-15	150	30	100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP

ORDER INFORMATION(CONTINUED)
 PLASTIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(uA)	OPERATING TEMPERATURE	PACKAG
MX27C1000PI-70	70	30	100	$-40{ }^{\circ} \mathrm{C}$ t0 $85{ }^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000MI-70	70	30	100	$-40{ }^{\circ} \mathrm{C}$ t0 $85^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1000QI-70	70	30	100	$-40^{\circ} \mathrm{C}$ t0 $85^{\circ} \mathrm{C}$	32 Pin PLCC
MX27C1000TI-70	70	30	100	$-40^{\circ} \mathrm{C}$ t0 $85^{\circ} \mathrm{C}$	32 Pin TSOP
MX27C1000PI-90	90	30	100	$-40^{\circ} \mathrm{C}$ t0 $85^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000MI-90	90	30	100	$-40^{\circ} \mathrm{C}$ t0 $85^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1000QI-90	90	30	100	$-40{ }^{\circ} \mathrm{C}$ t0 $85{ }^{\circ} \mathrm{C}$	32 Pin PLCC
MX27C1000TI-90	90	30	100	$-40{ }^{\circ} \mathrm{C}$ t0 $85^{\circ} \mathrm{C}$	32 Pin TSOP
MX27C1000PI-12	120	30	100	$-40^{\circ} \mathrm{C}$ t0 $85^{\circ} \mathrm{C}$	32 Pin DIP
MX27C1000MI-12	120	30	100	$-40^{\circ} \mathrm{C}$ t0 $85^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1000QI-12	120	30	100	$-40{ }^{\circ} \mathrm{C}$ t0 $85{ }^{\circ} \mathrm{C}$	32 Pin PLCC
MX27C1000TI-12	120	30	100	$-40^{\circ} \mathrm{C}$ t0 $85{ }^{\circ} \mathrm{C}$	32 Pin TSOP
MX27C1000PI-15	150	30	100	$-40^{\circ} \mathrm{C}$ t0 $85^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1000MI-12	120	30	100	$-40^{\circ} \mathrm{C}$ t0 $85^{\circ} \mathrm{C}$	32 Pin SOP
MX27C1000QI-15	150	30	100	$-40^{\circ} \mathrm{C}$ t0 $85^{\circ} \mathrm{C}$	32 Pin PLCC
MX27C1000TI-15	150	30	100	$-40^{\circ} \mathrm{C}$ t0 $85{ }^{\circ} \mathrm{C}$	32 Pin TSOP

PACKAGE INFORMATION

32-PIN CERDIP(MSI) WITH WINDOW (600 mil)

32-PIN PLASTIC DIP(600 mil)

PACKAGE INFORMATION(Continued)

32-PIN PLASTIC SOP (450 mil)

32-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

PACKAGE INFORMATION

32-PIN PLASTIC TSOP

ITEM	MILLIMETERS	INCHES
A	$20.0 \pm .20$	$.078 \pm .006$
B	$18.40 \pm .10$	$.724 \pm .004$
C	8.20 max.	.323 max.
D	0.15 [Typ.]	.006 [Typ.]
E	$.80[$ Typ.]	.031 [Typ.]
F	$.20 \pm .10$	$.008 \pm .004$
G	$.30 \pm .10$	$.012 \pm .004$
H	$.50[$ Typ.]	$.020[$ Typ.]
I	.45 max.	.018 max.
J	$0 \sim .20$	$0 \sim .008$
K	$1.00 \pm .10$	$.039 \pm .004$
L	1.27 max.	.050 max.
M	.50	.020
N	19.00	.748
O	$0 \sim 5$.500

NOTE: Each lead centerline is located within . 25 $\mathrm{mm}[.01$ inch] of its true position [TP] at a maximum material condition.

Revision History

Revision No.	Description	Date
5.0	1) Reduce operating current change from 40 mA to 30 mA .	5/28/1997
	2) Eliminate Interactive Programming Mode.	
	3) Add 27C1001 pin configuration.	
5.1	IPP 100uA --> 10uA	8/08/1997
5.2	Change TSOP Orientation	4/09/1998
5.3	27C1000CDIP 70/90/100/120/150ns speed grades deleted from ordering information.	5/07/1998

Macronix International Co., Ltd.

HEADQUARTERS:
TEL:+886-3-578-8888
FAX:+886-3-578-8887

EUROPE OFFICE:
TEL:+32-2-456-8020
FAX:+32-2-456-8021

JAPAN OFFICE:

TEL:+81-44-246-9100
FAX:+81-44-246-9105

SINGAPORE OFFICE:
TEL:+65-747-2309
FAX:+65-748-4090

TAIPEI OFFICE:
TEL:+886-3-509-3300
FAX:+886-3-509-2200
Macronix America, Inc.
TEL:+1-408-453-8088
FAX:+1-408-453-8488

CHICAGO OFFICE:
TEL:+1-847-963-1900
FAX:+1-847-963-1909
http : //www.macronix.com

